The Remote Sensing of Tropospheric Composition from Space

Editors: John P. Burrows Ulrich Platt Peter Borrell Physics of Earth and Space Environments
John P. Burrrows
Utrich Platt
Peter Borrell *Editors*The
Remote Sensing
of Tropospheric
Composition from
Space

D Springer

Pages i to xxxii

Series preface	ii
Book Preface	v
Table of Contents	ix
Contributors	xix
List of Tables	xxiii
List of Figures	XXV
Chemical names & Molecular Formulae	xxxi

Publisher: Springer Verlag, Heidelberg Springer Book Web Page Springer on line Page for the Book ISBN 978-3-642-14790-6 DOI 10.1007/978-3-642-14791-3

February 2011

The Remote Sensing of Tropospheric Composition from Space

Physics of Earth and Space Environments

The series *Physics of Earth and Space Environments* is devoted to monograph texts dealing with all aspects of atmospheric, hydrospheric and space science research and advanced teaching. The presentations will be both qualitative as well as quantitative, with strong emphasis on the underlying (geo)physical sciences. Of particular interest are

- contributions which relate fundamental research in the aforementioned fields to present and developing environmental issues viewed broadly
- concise accounts of newly emerging important topics that are embedded in a broader framework in order to provide quick but readable access of new material to a larger audience

The books forming this collection will be of importance for graduate students and active researchers alike.

Series Editors:

Rodolfo Guzzi Responsabile di Scienze della Terra Head of Earth Sciences Via di Villa Grazioli, 23 00198 Roma, Italy Louis J. Lanzerotti Bell Laboratories, Lucent Technologies 700 Mountain Avenue Murray Hill, NJ 07974, USA

Ulrich Platt Ruprecht-Karls-Universität Heidelberg Institut für Umweltphysik Im Neuenheimer Feld 229 69120 Heidelberg, Germany

For other titles published in the series, go to www.springer.com/series/5117

John P. Burrows • Ulrich Platt • Peter Borrell Editors

The Remote Sensing of Tropospheric Composition from Space

With 158 Figures and 23 Tables

Prof. Dr. John P. Burrows Universität Bremen Institut für Umweltphysik (IUP) Otto-Hahn-Allee 1 28359 Bremen Germany burrows@iup.physik.uni-bremen.de

Dr. Peter Borrell P & PMB Consultants 6 Berne Avenue Newcastle-under-Lyme ST5 2QJ, United Kingdom peter@ppmborrell.co.uk Prof. Dr. Ulrich Platt Universität Heidelberg Institut für Umweltphysik Im Neuenheimer Feld 229 69120 Heidelberg Germany ulrich.platt@iup.uni-heidelberg.de

ISSN 1610-1677 e-ISSN 1865-0678 ISBN 978-3-642-14790-6 e-ISBN 978-3-642-14791-3 DOI 10.1007/978-3-642-14791-3 Springer Heidelberg Dordrecht London New York

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The impact of anthropogenic activities on our atmospheric environment is of much public concern, and the economic and technical solutions needed to provide a sustainable environment require reliable observations, coupled with a proper scientific understanding. Satellite-based techniques now provide an essential component of observational strategies on regional and global scales.

It is now some 15 years since the launch of GOME, the first satellite instrument designed specifically to retrieve the composition of trace gases and pollutants in the troposphere. Since then the number of satellite instruments has increased steadily, and the availability of satellite data is providing the capability of monitoring the state of the global atmosphere. It is also radically changing the field of atmospheric chemistry.

The purpose of this book is to summarise the state of the art in the field; to describe the technology and techniques used; and to demonstrate the key findings and results. The book has its origins in TROPOSAT, a project initiated within the EUROTRAC framework, to encourage the use and usability of satellite data for tropospheric research; the project was continued within the EU air quality project, ACCENT. Two of the book's editors were proposers of SCIAMACHY and the smaller scale GOME, which initiated European-based remote sensing of tropospheric trace gases from space. The third has coordinated the various TROPOSAT activities, having previously been the Executive Scientific Secretary of the EUROTRAC project. All the contributing authors to this volume are senior scientists actively involved in the field – in satellite data retrievals, in the validation of tropospheric data, in the interpretation of the global and regional results and in the modelling, which relies on the data; most are part of the TROPOSAT community.

The book opens with an historical perspective of the field together with the basic principles of remote sensing from space. Three chapters follow on the techniques and on the solutions to the problems associated with the various spectral regions in which observations are made.

The particular challenges posed by aerosols and clouds are covered in the next two chapters. Of special importance is the accuracy and reliability of remote sensing data and these issues are covered in a chapter on validation. The final section of the book is concerned with exploitation of the data for scientific and operational applications. These include investigations using individual data products and synergistic studies using a variety of data products. Comparison of global and regional observations with chemical transport and climate models are discussed and the potential added value from the synergetic interaction of model and measurements identified.

The book concludes with scientific needs and likely future developments in the field, and the necessary actions to be taken if we are to have the global observation system that the Earth needs in its present, deteriorating state.

The appendices provide a comprehensive list of satellite instruments, global representations of some ancillary data such as fire counts and light pollution, a list of abbreviations and acronyms, and a set of colourful timelines indicating the satellite coverage of tropospheric composition in the foreseeable future.

The recent impact of volcanic ash on European air transport (Chapter 10) has provided a forceful reminder of the utility of satellite observations in monitoring and understanding the tropospheric constituents in the atmosphere. Thus the book provides a timely account of the developments in a new area of much utility to sustaining a healthy atmosphere.

Bremen, Germany and NERC CEH, Wallingford, UK	John P. Burrows
Heidelberg, Germany	Ulrich Platt
Newcastle-under-Lyme, UK	Peter Borrell

Acknowledgements

We would like to thank our co-contributing authors, for their excellent contributions and for their patience with the editing process; our contributors, Cathy Clerbaux, Klaus Kunzi and Gerrit de Leeuw for their thoughtful reading of our own two chapters; Christian Caron and his colleagues at Springer for their patient encouragement; our many colleagues and friends in TROPOSAT, in ACCENT and elsewhere, for their continued encouragement and support; and Dr Patricia Borrell for her thorough reading of the manuscript and many appreciable contributions to the content and form of this book.

University of Bremen John P. Burrows Bremen, Germany and NERC Centre for Ecology and Hydrology Wallingford, United Kingdom University of Heidelberg Ulrich Platt Heidelberg, Germany P&PMB Consultants Peter Borrell Newcastle-under-Lyme, UK

Picture created by Maria Kanakidou and Vassilis Papadimitriou

Contents

Co	ontrib	utors	kix
Li	st of '	Гables хх	ciii
Li	st of l	Figures x	XV
Cł	nemic	al Names and Molecular Formulae xx	xi
1	Troj John	Pospheric Remote Sensing from Space	1
	1.1	Remote Sensing and the Scope of the Book	1
	1.2	Earth Observation and Remote Sensing	3
	1.3	Atmospheric Remote Sensing from Space	5
		1.3.1 Pre-Satellite Days	5
		1.3.2 Some Historical Milestones in Satellite Remote Sensing	6
		1.3.3 Tropospheric Remote Sensing Using Back-Scattered	
		Solar Radiation	7
		1.3.4 Remote Sensing Using Thermal Infrared	
		in the Troposphere	9
		1.3.5 TROPOSAT and AT2	10
	1.4	The Atmosphere, Tropospheric Chemistry and Air Pollution	11
		1.4.1 The Physical Structure of the Atmosphere	11
		1.4.2 Tropospheric Chemistry	13
		1.4.3 Air Pollution and Environmental Policy	17
		1.4.4 Environmental Issues of Relevance to the Troposphere	19
	1.5	Measuring Atmospheric Composition	24
		1.5.1 Long Term Observations	24
		1.5.2 Regional and Episodic Studies	25
		1.5.3 Investigation of Fast In Situ Photochemistry	25
		1.5.4 In Situ Observational Techniques	25
		1.5.5 Remote Sensing Versus In Situ Techniques	26

		1.5.6 The Need for Global Tropospheric Measurements	
		from Space	27
	1.6	Electromagnetic Radiation and Molecular Energy Levels	28
		1.6.1 Electromagnetic Radiation	28
		1.6.2 Molecular Energy States	31
	1.7	Molecular Spectra and Line Broadening	35
		1.7.1 Line Broadening Mechanisms and the Width	
		of Absorption Lines	36
		1.7.2 The Natural Linewidth	37
		1.7.3 Pressure Broadening (Collisional Broadening)	37
		1.7.4 Doppler Broadening	38
		1.7.5 Atmospheric Spectral Line Shapes in Different	
		Spectral Ranges	39
	1.8	Spectroscopic Techniques for Chemical Analysis	40
		1.8.1 Absorption Spectroscopy	40
		1.8.2 Emission Spectroscopy	42
	1.9	Atmospheric Scattering and Radiation Transfer	42
		1.9.1 Scattering	43
		1.9.2 Atmospheric Radiative Transfer	46
	1.10	Remote Sensing: Images and Spectroscopy	49
		1.10.1 Satellite Images	49
		1.10.2 Spectroscopic Techniques in Remote Sensing	50
		1.10.3 Passive and Active Remote Sensing	53
		1.10.4 Nadir, Limb and Occultation Views	53
		1.10.5 Active Techniques	56
	1.11	Satellite Orbits	58
		1.11.1 Low Earth Orbits (LEO)	58
		1.11.2 Geostationary Orbits (GEO)	59
	1.12	Summary	61
	Refe	rences	61
2	The	Use of UV. Visible and Near IR Solar Back Scattered	
	Rad	iation to Determine Trace Gases	67
	And	reas Richter and Thomas Wagner	
	2.1	Basics and Historical Background	67
		2.1.1 Satellite Observations in the UV/vis/NIR Spectral Range	70
	,	2.1.2. Spectral Retrieval and Radiative Transfer Modelling	73
	2.2	Spectral Retrieval	74
	2.2	2.2.1 Discrete Wavelength Techniques	76
	,	2.2.2 DOAS Type Retrievals	78
	,	2.2.3 Some Considerations for DOAS Retrievals	80
	,	2.2.4 Advanced DOAS Concents	83
	23	Interpretation of the Observations Using Radiative	00
	2.5	Transfer Modelling	86
			00

Contents

		2.3.1 Relevant Interaction Processes Between	
		Radiation and Matter	86
		2.3.2 Quantities Used for the Characterisation of the	
		Measurement Sensitivity	91
		2.3.3 Important Input Data	98
		2.3.4 Overview of Existing Radiative Transfer Models	99
	2.4	Separation of Tropospheric and Stratospheric Signals	101
		2.4.1 Stratospheric Measurement Methods	102
		2.4.2 Residual Methods	103
		2.4.3 Model Method	103
		2.4.4 Cloud Slicing method	104
		2.4.5 Other Possible Approaches	104
	2.5	Uncertainties in UV/vis/NIR Satellite Measurements	105
		2.5.1 Instrument Noise and Stray Light	106
		2.5.2 Spectroscopic Uncertainties and Instrument Slit Width	107
		2.5.3 Spectral Interference	107
		2.5.4 Light Path Uncertainties	108
		2.5.5 Uncertainty of Separation Between Stratosphere	
		and Troposphere	109
	2.6	Synopsis of the Historic, and Existing, Instruments	
		and Data Products	110
	2.7	Example of the Retrieval Process	111
	2.8	Future Developments	113
		2.8.1 Technical Design	113
		2.8.2 Data Analysis	115
		2.8.3 Synergistic Use of Complementary Satellite Observations	115
	Ref	erences	116
3	Usi	ng Thermal Infrared Absorption and Emission	
	to I	Determine Trace Gases	123
	Cat	hy Clerbaux, James R. Drummond, Jean-Marie Flaud	
	and	Johannes Orphal	
	3.1	Physical Principles	123
	3.2	Thermal Infrared Instruments: Techniques, History, Specificity	127
		3.2.1 Techniques	127
		3.2.2 History	128
		3.2.3 Specificity	129
	3.3	Thermal Infrared: Missions and Products	135
	3.4	Examples	135
		3.4.1 Limb and Solar Occultation Instruments	135
		3.4.2 Nadir Looking Instruments	141
	3.5	Future Plans for Tropospheric Sounders	145
	Ref	erences	147

4	Mic Tra	rowave Absorption, Emission and Scattering: ce Gases and Meteorological Parameters	153
	Klau	is Kunzi, Peter Bauer, Reima Eresmaa, Patrick Eriksson,	
	Sear	n B. Healy, Alberto Mugnai, Nathaniel Livesey,	
	Cath	erine Prigent, Eric A. Smith and Graeme Stephens	
	4.1	Introduction	153
	4.2	Atmospheric Remote Sensing in the Microwave range	154
		4.2.1 Vector and Scalar Radiative Transfer	154
		4.2.2 Gas Absorption in the Microwave Region	156
		4.2.3 Particle Extinction in the Microwave Region	157
		4.2.4 Simulation Software	158
		4.2.5 The Inverse Problem	160
		4.2.6 Observing Technique	162
	4.3	Temperature and Water Vapour Profiles	164
		4.3.1 Introduction	164
		4.3.2 Examples	166
	4.4	Remote Sensing of Clouds and precipitation	167
		4.4.1 Introduction	167
		4.4.2 Retrieval of Cloud Liquid Water	170
		4.4.3 Retrieval of Cloud Ice Water	172
		4.4.4 Precipitation	174
	4.5	Applications of Microwave Data in Operational Meteorology	177
		4.5.1 Data Assimilation	177
		4.5.2 Microwave Data in Operational Meteorology	177
		4.5.3 Microwave Radiative Transfer Modelling	
		in Data Assimilation	179
		4.5.4 Impact of Remote Sensing Data on NWP	181
		4 5 5 Conclusions	184
	46	Microwave Limb Sounding of the Troposphere	186
	1.0	4.6.1 Background to Microwave Limb Sounding	100
		of the Tronosphere	186
		4.6.2 Previous Existing and Planned Microwave	100
		Limb Sounding Instruments	187
		4.6.3 Applications of Microwave Limb Sounding	107
		of the Tronosphere	188
		4.6.4 Upper Tropospheric Composition and Chemistry	101
		4.6.5 Conclusions	103
	17	Active Techniques	105
	4./	Active rechniques	195
		4.7.1 Infoduction	195
		4.7.2 The CloudSat Radai	190
		4.7.3 The Cloud Drofiling Dadar	190
		4.7.4 The Cloud Flohing Radai	19/
		4.7.5 The Tropical Kalillari Measurement Mission	198
		4.7.0 Kesults from 1 Kivilvi	200
		4././ Conclusions	203

	4.8	Measuring Atmospheric Parameters Using the Global	
		Positioning System	204
		4.8.1 GPS Radio Occultation	204
		4.8.2 Data Availability and Impact	205
		4.8.3 Ground-Based GPS Observations	207
		4.8.4 Impact Studies	210
	4.9	Outlook	211
	4.10	Tables of Microwave Sensors	213
	Refe	prences	215
5	Dom	note Consing of Tennestrial Clouds from Space using	
5	Ren	kscattering and Thermal Emission Techniques	231
	Alex	rander A. Kokhanovsky. Steven Platnick and Michael D. King	231
	5 1	Introduction	221
	5.1	Cloud Parameters and Their Petrievals	231
	5.2	5.2.1 Cloud Cover	232
		5.2.1 Cloud Cover	235
		5.2.2 Cloud Phase	200
		5.2.5 Cloud Optical Hildkness	237
		5.2.4 Effective Radius	239
		5.2.5 Cloud Liquid water and ice Pain	243
	5.2	S.2.6 Cloud Top Height	244
	5.3	Validation of Satellite Cloud Products	247
	5.4	Modern Trends in Optical Cloud Remote Sensing from Space	249
		5.4.1 Hyperspectral Remote Sensing	249
		5.4.2 Lidar Remote Sensing	251
		5.4.3 Future Missions	252
	5.5	Conclusions	254
	Refe	prences	254
6	Reti	ieval of Aerosol Properties	259
	Gerr	it de Leeuw. Stefan Kinne, Jean-Francois Léon, Jacques Pelon.	
	Dan	iel Rosenfeld, Martiin Schaap, Pepiin J. Veefkind, Ben Veihelmann,	
	Dav	id M. Winker and Wolfgang von Hovningen-Huene	
	6.1	Introduction	259
	6.2	Aerosol Retrieval Algorithms	264
	63	Aerosol Ontical Parameters	266
	6.4	Databases for Aerosol Properties	269
	6.5	Instruments Used for the Retrieval of Aerosol Properties	207
	0.5	from Snace	270
	66	Retrieval of Aerosol and Cloud Parameters from CAI IPSO	210
	0.0	Observations	271
		6.6.1 The CALIPSO Science Pavload	271
		662 CALIOP Data Calibration	212
		6.6.2 Description of Available Data Products from CALIOD	213
		0.0.5 Description of Avanable Data Floducts from CALIOP	214

		6.6.4 CALIOP Retrieval Procedure for the Extinction	
		Coefficient	275
	6.7	Aerosol Remote Sensing from POLDER	276
		6.7.1 POLDER Remote Sensing of Aerosols Over	
		Ocean Surfaces	277
		6.7.2 POLDER Remote Sensing of Aerosols Over	
		Land Surfaces	278
	6.8	Retrieval of Aerosol Properties Using AATSR	279
		6.8.1 AATSR Characteristics	280
		6.8.2 AATSR Retrieval Algorithm	280
		6.8.3 AATSR Products	281
	69	Aerosol Remote Sensing from Aqua/MODIS	283
	0.7	6.9.1 MODIS Remote Sensing of Aerosols Over Ocean	205
		Surfaces	283
		6.0.2 MODIS Remote Sensing of Aerosols Over Land	285
	6 10	Aerosol Properties from OMI	204
	0.10	6.10.1. Droperties from OMI Using the Multi-Wayslangth	204
		Alequider	207
		Algorium	287
	6 1 1	0.10.2 Status of the OMAERO Product	288
	0.11	Retrieval of Aerosol Properties Using MERIS	289
	6.12	Validation	292
	6.13	Air Quality: Using AOD to Monitor PM2.5 in the Netherlands	292
		6.13.1 Establishing an AOD-PM2.5 Relationship	294
		6.13.2 Application of the AOD-PM2.5 Relationship	
		to MODIS Data	296
	6.14	Application to Climate: Aerosol Direct Radiative Forcing	297
		6.14.1 Uncertainties in Aerosol Direct Radiative Forcing	299
		6.14.2 Comparisons of Aerosol Radiative Forcing	
		with Models	300
		6.14.3 Aerosol Radiative Forcing: Conclusions	301
	6.15	Use of Satellites for Aerosol-Cloud Interaction Studies	301
	6.16	Intercomparison of Aerosol Retrieval Products	303
	6.17	Conclusions	304
	Refe	rences	306
7	Data	Quality and Validation of Satellite Measurements	
	of T	ropospheric Composition	315
	Anki	e J.M. Piters, Brigitte Buchmann, Dominik Brunner,	
	Rona	dd C. Cohen, Jean-Christopher Lambert, Gerrit de Leeuw.	
	Piet	Stammes, Michiel van Weele and Folkard Wittrock	
	7.1	Introduction	315
	7.2	Methods of Validation	319
	,,	7.2.1 Definitions	319
	,	7.2.2 Comparing Data Sets	320
		.2.2 Comparing Data Deto	520

	7.2.3 Use of Models	328
	7.2.4 Data Variability	329
	7.3 Quality Assurance	330
	7.3.1 Validation and Mission Planning	331
	7.3.2 Calibration	331
	7.3.3 Lower-Level Data Products	332
	7.3.4 Retrieval Algorithm Optimisation	333
	7.3.5 Instrument Degradation	333
	7.3.6 Overall Quality Monitoring	334
	7.4 Validation Characteristics of Tropospheric Products	335
	7.4.1 Tropospheric Processes Impacting on Trace	
	Gas Distributions	336
	7.4.2 Validation Needs for Trace Gases with Stratospheric	
	Contributions	338
	7.4.3 Validation Needs Related to Cloud, Albedo	
	and Aerosol Effects	341
	7.4.4 Validation Needs for Aerosols	343
	7.5 The Use of Correlative Measurements for Validation	344
	7.5.1 In Situ Measurements	344
	7.5.2 Remote Sensing	349
	7.5.3 Networks and Data Centres	353
	7.5.4 Validation Activities	354
	7.6 Future Validation strategies	354
	7.6.1 Requirements for Future Validation Measurements	354
	7.6.2 Validation Strategy for Tropospheric O ₃	355
	7.6.3 Validation Strategy for Tropospheric NO ₂	355
	7.6.4 Validation Strategy for CO	357
	References	357
8	Applications of Satellite Observations of Tropospheric	
	Composition	365
	Paul S. Monks and Steffen Beirle	
	8.1 Introduction	365
	8.2 Overview of the Tropospheric Chemical Species	
	Measured from Space	366
	8.2.1 Tropospheric Ozone, O_3	366
	8.2.2 Nitrogen Dioxide, NO_2	368
	8.2.3 Carbon Monoxide, CO	371
	8.2.4 Formaldehyde, HCHO	378
	8.2.5 Glyoxal, CHOCHO	379
	8.2.6 Sultur Dioxide, SO_2	380
	8.2.7 Ammonia, NH_3	382
	8.2.8 Carbon Dioxide, CO_2	382

	8.2.9 Methane, CH ₄	384
	8.2.10 Water, H ₂ O	385
	8.2.11 Bromine Monoxide, BrO	386
	8.2.12 Iodine Monoxide, IO	388
	8.2.13 Methanol, CH ₃ OH	389
	8.2.14 Nitrous Oxide, N ₂ O	390
	8.2.15 Nitric Acid, HNO_3	391
	8.2.16 Other Trace Species	391
	8.3 Satellite Observations of Tropospheric Composition:	
	What Can We Learn?	399
	8.3.1 Column Density Maps as Proxies for Emissions	399
	8.3.2 Monitoring Transport and Circulation	404
	8.3.3 Trends	407
	8.3.4 Periodical Temporal Patterns	410
	8.3.5 Synergistic Use of Different Measurements	411
	8.3.6 Operational Use	416
	8.4 Summary and Outlook	417
	References	418
9	Synergistic Use of Retrieved Trace Constituent Distributions	
	and Numerical Modelling	451
	Maria Kanakidou, Martin Dameris, Hendrik Elbern,	
	Matthias Beekmann, Igor B. Konovalov, Lars Nieradzik,	
	Achim Strunk and Maarten C. Krol	
	9.1 Introduction	451
	9.2 Use of Satellite Data for Process Understanding	
	and Model Evaluation	454
	9.2.1 Understanding Atmospheric Chemistry	455
	9.2.2 Model Evaluations – Comparison with Observation	461
	9.3 Inverse Modelling	467
	9.3.1 Inversions for Short-Lived Species	467
	9.3.2 Inversions for CO and CH ₄	471
	9.3.3 Need for Future Developments	472
	9.4 Data Assimilation	473
	9.4.1 Objectives and State of the Art Approaches	473
	9.4.2 Example Results for Tropospheric O ₃ assimilation	475
	9.4.3 Example Results for NO ₂ Tropospheric	
	Column Assimilation	476
	9.4.4 Aerosol Satellite Data Assimilation	478
	9.5 Summary: Perspectives	481
	9.6 Appendix	482
	Inverse Modelling: Principles	482
	References	485

10	Conclusions and Perspectives	493
	John P. Burrows, Ulrich Platt and Peter Borrell	
	10.1 Introduction: The Need for Satellite Observations	493
	10.2 Some Scientific Highlights	495
	10.2.1 Observed Compounds	495
	10.2.2 The Multiple Roles of NO ₂	496
	10.2.3 Industrial Emissions and Biomass Burning	496
	10.2.4 Ozone, O ₃	497
	10.2.5 Greenhouse Gases	497
	10.2.6 Water Vapour, and Other Hydrological	
	and Cloud Parameters	498
	10.2.7 Aerosol and Cloud Parameters	498
	10.2.8 Volcanic Emissions	500
	10.3 Scientific Needs	500
	10.4 Further Interpretation of Data from Current Instrumentation	502
	10.4.1 Retrieval Algorithm Developments	502
	10.4.2 The Use of Multiple Observations	503
	10.4.3 Data Assimilation	503
	10.5 Idealised Requirements for the Evolution of Instrumentation	504
	10.6 Perspectives for the Improvement of Instrument Technology	505
	10.6.1 Polarisation Measurements	505
	10.6.2 Measurements for Tomographic Reconstruction	506
	10.6.3 Multi-Wavelength Hyper-Spectral Measurements	506
	10.6.4 Multi-Instrument Measurements	506
	10.6.5 Microwave and Sub-mm Spectral Region	506
	10.6.6 Active Systems	506
	10.7 Current and Future Planned Missions	507
	10.7.1 LEO Satellite Instruments	507
	10.7.2 GEO Satellite Instruments	508
	10.7.3 Greenhouse Gases	509
	10.7.4 Observations from the Lagrange Point	510
	10.8 Future Monitoring of the Troposphere from Space	510
	10.9 Conclusions	512
	References	513
Ap	ndices	515
r·1	Appendix A: Satellite Instruments for the Remote Sensing	
	n the UV. Visible and IR	515
	Abbreviations Used in the Table	515
	Appendix B: Atlas of Ancillary Global Data	522
	Appendix C: Abbreviations and Acronyms	524
	Appendix D: Timelines for Present and Future Missions	532
	11	
Ind	٢	539

Contributors

Dr. Peter Bauer European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

Dr. Matthias Beekmann Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) CNRS, Université Paris, Est et Paris 7, Créteil, France

Dr. Steffen Beirle Max-Planck-Institut für Chemie, Mainz, Germany

Dr. Peter Borrell P&PMB Consultants, Newcastle-under-Lyme, Uinted Kingdom

Dr. Dominik Brunner Laboratory for Air Pollution Technology, Empa, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, Switzerland

Dr. Brigitte Buchmann Laboratory for Air Pollution Technology, Empa, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, Switzerland

Prof. John P. Burrows Institute of Environmental Physics (IUP), University of Bremen, Germany; NERC Centre for Ecology and Hydrology, Wallingford, United Kingdom

Dr. Cathy Clerbaux UPMC Univ. Paris 06; CNRS/INSU, LATMOS-IPSL, Paris, France

Prof. Ronald C. Cohen Department of Chemistry, University of California, Berkeley, CA, USA

Prof. James R. Drummond Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada

Dr. Hendrik Elbern Rhenish Institute for Environmental Research at the University of Cologne, Köln, Germany

Dr. Reima Eresmaa European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

Dr. Patrick Eriksson Department of Earth and Space Science, Chalmers University of Technology, Gothenburg, Sweden

Prof. Jean-Marie Flaud Université Créteil Paris 12, CNRS UMR 7583, LISA-IPSL, Paris, France

Dr. Sean Healy European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

Dr. Wolfgang von Hoyningen-Huene Institute of Environmental Physics, University of Bremen, Bremen, Germany

Dr. Michael D. King Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309, USA

Dr. S. Kinne MPI-Meteorology, Hamburg, Germany

Dr. Alexander A. Kokhanovsky Institute of Environmental Physics, University of Bremen, Germany

Dr. Igor B. Konovalov Institute of Applied Physics, Russian Acadamy of Sciences, Nizhnig, Novgorod, Russia

Prof. Klaus Kunzi University of Bremen, Institute of Environmental Physics, Bremen, Germany

Dr. Jean-Christopher Lambert Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

Prof. Gerrit de Leeuw Climate Change Unit, Finnish Meteorological Institute, Helsinki, Finland; Department of Physics, University of Helsinki, Helsinki, Finland; TNO Environment and Geosciences, Utrecht, The Netherlands

Dr. Jean-Francois Léon LOA, Lille, France

Dr. Nathaniel Livesey Microwave Atmospheric Science Team, Jet Propulsion Laboratory, Pasadena, CA, USA

Dr. Maarten Krol Meteorology and Air Quality, Environmental Sciences Group, Wageningen University, Wageningen, The Netherlands

Prof. Maria Kanakidou Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece

Prof. Martin Dameris Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

Prof. Paul S. Monks Department of Chemistry, University of Leicester, Leicester, United Kingdom

Dr. Alberto Mugnai Istituto di Scienze dell'Atmosfera e del Clima (ISAC), CNR, Roma, Italy

Dr. Lars Nieradzik Rhenish Institute for Environmental Research at the University of Cologne, Köln, Germany

Prof. Johannes Orphal Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Germany

Dr. Jacques Pelon Université Pierre et Marie Curie, Paris, France

Dr. Ankie J.M. Piters Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

Dr. Steven Platnick NASA Goddard Space Flight Center, Greenbelt, MD, USA

Prof. Ulrich Platt Institute of Environmental Physics (IUP), University of Heidelberg, Heidelberg, Germany

Dr. Catherine Prigent CNRS, Observatoire de Paris, Paris, France

Dr. Andreas Richter Institute of Environmental Physics, University of Bremen, Bremen, Germany

Prof. Daniel Rosenfeld The Hebrew University of Jerusalem, Jerusalem, Israel

Dr. Martijn Schaap TNO Environment and Geosciences, Utrecht, The Netherlands

Dr. Eric A. Smith NASA/Goddard Space Flight Center, Greenbelt, MD, USA

Dr. Piet Stammes Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

Dr. Graeme Stephens Colorado State University, Fort Collins, CO, USA

Dr. Achim Strunk Rhenish Institute for Environmental Research at the University of Cologne, Köln, Germany

Dr. Pepijn J. Veefkind Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

Dr. Ben Veihelmann ESA/ESTEC, European Space Agency, Noordwijk, The Netherlands

Prof. Thomas Wagner Max-Planck-Institute for Chemistry, Mainz, Germany

Dr. Michiel van Weele Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

Dr. David M. Winker NASA Langley Research Center, Hampton, USA

Dr. Folkard Wittrock Institute of Environmental Physics, University of Bremen, Germany

List of Tables

Introduction	Chemical Names and Molecular Formulae	XXX
Table 2.1	Tropospheric trace species observed with UV/vis/NIR	
	from space	75
Table 2.2	Input for radiative transfer simulation of tropospheric	
	trace gases	99
Table 2.3	Error sources in UV/vis/NIR retrievals of trace species	106
Table 3.1	Molecules absorbing in the TIR with bands and modes	136
Table 4.1	Operational microwave sensors presently in space	213
Table 4.2	Previous, current and planned microwave limb sounding	
	instruments	214
Table 6.1	Characteristics of the CALIPSO instruments	271
Table 6.2	Spatial resolution of down-linked lidar data	274
Table 6.3	List of CALIPSO products	275
Table 6.4	CALIOP science products and uncertainties	277
Table 6.5	Characteristics of look-up tables in use	290
Table 6.6	Annual global averages for aerosol direct forcing	298
Table 7.1	Estimated uncertainties of tropospheric satellite	
	products	317
Table 7.2	Main cloud parameters for tropospheric trace	
	gas retrievals	342
Table 7.3	Ground-based data networks and their data centres	345
Table 7.4	Remote sensing, balloon and aircraft networks and data centres	346
Table 7.5	Satellite data centres	347
Table 7.6	Web sites listing validation activities and results	354
Table 8.1	Biomass burning episodes identified using	
	CO from space	376
Table 8.2	Application of tropospheric satellite SO ₂ to volcanic	
	emissions	381

Table 8.3	Tropospheric trace gases measured from space	392
Table 9.1	Root mean square errors for assimilation fields for two	
	consecutive dates validated by unassimilated in situ	
	observations within satellite footprints. Improvements are	
	given with respect to no assimilation	480
Appendix A	Satellite Instruments for remote sensing in the	
	UV/vis/IR	515
Appendix C	Abbreviations and Acronyms	524

List of Figures

Fig. 1.1	The atmosphere: pressure/altitude profile	12
Fig. 1.2	The atmosphere: temperature/altitude profile	12
Fig. 1.3	Complex physical and chemical interactions	
	in the atmosphere	15
Fig. 1.4	The electromagnetic spectrum	29
Fig. 1.5	The interaction of radiation with matter	30
Fig. 1.6	Ro-vibrational levels of a diatomic molecule	33
Fig. 1.7	Electronic/vibrational spectrum of IO	35
Fig. 1.8	Spectroscopic line profiles: Voigt, Lorentzian and Gauss	40
Fig. 1.9	The principle of absorption spectroscopy	41
Fig. 1.10	The polarised Mie scattering function	46
Fig. 1.11	Smoke plume from the Etna volcano	50
Fig. 1.12	Reflectivity of ground cover and water	51
Fig. 1.13	Active and passive remote sensing systems	54
Fig. 1.14	Nadir, limb and occultation viewing geometries	55
Fig. 1.15	The lidar technique	56
Fig. 1.16	Polar orbits	59
Fig. 1.17	Sun-synchronous polar orbit	60
Fig. 1.18	Whisk broom scanning scheme	60
Fig. 2.1	Ozone absorption cross sections	68
Fig. 2.2	Viewing geometries for satellite observations	71
Fig. 2.3	Solar, earthshine and resultant reflectance spectra	72
Fig. 2.4	The Ring effect	81
Fig. 2.5	The light received by a satellite	87
Fig. 2.6	Rayleigh scattering: phase function	87
Fig. 2.7	Mie scattering: phase function	88
Fig. 2.8	The Earth's albedo at 335 nm and 670 nm	89
Fig. 2.9	Angular dependency of surface reflection	90
Fig. 2.10	Height dependence of the sensitivity of satellite	
	observations	94

Fig. 2.11	Effect of clouds and aerosol on sensitivity	94
Fig. 2.12	Column averaging kernels	96
Fig. 2.13	Methods to separate tropospheric and stratospheric	
	signals	102
Fig. 2.14	Example of the spectral retrieval of NO ₂ from GOME	112
Fig. 2.15	Example of NO ₂ data analysis steps	113
Fig. 2.16	Effect of improvements in spatial resolution	114
Fig. 3.1	Thermal emission spectrum as a function of temperature	124
Fig. 3.2	Thermal emission of the atmosphere in the IR	125
Fig. 3.3	MOPITT averaging kernels for Africa	132
Fig. 3.4	A schematic for a neural network	134
Fig. 3.5	Spectral bands recorded by MIPAS	137
Fig. 3.6	IASI radiance and transmittance spectra	137
Fig. 3.7	ACE FTS seasonal measurements of CO	138
Fig. 3.8	Spectral coverage of MIPAS	139
Fig. 3.9	An O ₃ tropospheric intrusion event seen from HIRDLS	140
Fig. 3.10	Global distribution of CO, seen from MOPITT	142
Fig. 3.11	Global CO ₂ concentrations observed by AIRS	143
Fig. 3.12	Cross section of O_3 mixing ratios over the Atlantic	144
Fig. 3.13	Eurasian SO ₂ observed by IASI	146
Fig. 4.1	Zenith attenuation for various atmospheric gases	157
Fig. 4.2	Complex refractive index for liquid water and ice	158
Fig. 4.3	Cross sections for liquid water and ice particles	159
Fig. 4.4	Building blocks of a microwave radiometer	163
Fig. 4.5	Noise temperature limits for radiometric receivers	164
Fig. 4.6	Monochromatic weighting functions for O ₂ and H ₂ O lines	166
Fig. 4.7	ATM model simulations of brightness temperatures	169
Fig. 4.8	Observations of brightness temperatures for	
U	Hurricane Breton	170
Fig. 4.9	Error estimates for CIW retrievals	174
Fig. 4.10	ERA-40 observing system from 1957 to 2002	180
Fig. 4.11	Rms height errors in the forecast	182
Fig. 4.12	Rms forecast error for relative humidity	183
Fig. 4.13	Information content of rain-affected ECMWF analysis	185
Fig. 4.14	MLS observations of H ₂ O, CO and HCN	189
Fig. 4.15	MLS observations of cloud ice	190
Fig. 4.16	Upper tropospheric pollution over Asia	191
Fig. 4.17	MLS observations of CO	192
Fig. 4.18	MLS observations of CO, H ₂ O and O ₃	193
Fig. 4.19	SMLS observations compared with MLS	195
Fig. 4.20	MODIS observation of a warm frontal system	199
Fig. 4.21	Monthly rainfall accumulations in the tropics	201
Fig. 4.22	The GPSRO measurement technique	205
Fig. 4.23	Temperatures in the northern and southern hemispheres	207
0	r	=07

Fig. 4.24	European ground-based GPS observing system	209
Fig. 4.25	Data assimilation results for precipitation	210
Fig. 5.1	MODIS monthly cloud fractions	234
Fig. 5.2	Zonal monthly cloud fractions	234
Fig. 5.3	Thermal phase and brightness temperature	
	for various clouds	235
Fig. 5.4	Global monthly cloud fractions from MODIS	236
Fig. 5.5	Global monthly cloud optical thicknesses from MODIS	239
Fig. 5.6	Zonal mean monthly cloud optical thicknesses	240
Fig. 5.7	Global monthly mean water droplet and ice crystal radii	242
Fig. 5.8	Latitudinal distribution of cloud effective radius	243
Fig. 5.9	Global distribution of liquid water paths	245
Fig. 5.10	Dependence of cloud reflection functions on wavelength	246
Fig. 5.11	Global mean cloud top pressures	247
Fig. 5.12	Cloud top heights from ground radar and satellites	248
Fig. 5.13	latitudinal distribution of cirrus cloud heights	252
Fig. 6.1	CALIOP observations over Africa	273
Fig. 6.2	Global aerosol information from POLDER	279
Fig. 6.3	AOD over the UAE retrieved from AATSR data	282
Fig. 6.4	Comparison of AATSR and AERONET AOD data	282
Fig. 6.5	Flowchart for retrieving aerosol properties over the ocean	285
Fig. 6.6	Flowchart for retrieving aerosol properties over land	286
Fig. 6.7	Global AOD from MODIS	287
Fig. 6.8	Comparison of AOD from OMAERO, MODIS	
-	and POLDER	288
Fig. 6.9	Flow chart for the BAER retrieval system	291
Fig. 6.10	Correlation between PM2.5 and AOD from	
	a sun photometer	294
Fig. 6.11	Time series for PM2.5 and AOD	295
Fig. 6.12	Variation of PM2.5 and AOD	296
Fig. 6.13	Estimated PM2.5 over the Netherlands	297
Fig. 6.14	Global anthropogenic aerosol forcing	298
Fig. 6.15	Monthly global direct aerosol forcing	299
Fig. 7.1	Average TES-sonde error estimates	321
Fig. 7.2	Comparison of GOME and ground-based results for NO ₂	323
Fig. 7.3	Seasonal average of surface NO ₂ for 2005 over	
	North America	324
Fig. 7.4	FTIR measurements of CH ₄ over the Jungfraujoch	325
Fig. 7.5	Monthly average NO ₂ for cloud free days from OMI	326
Fig. 7.6	Tropospheric NO ₂ over the Tri-Cities, from OMI	326
Fig. 7.7	Regional comparison of CO columns from SCIAMACHY	
	and MOPITT	327
Fig. 7.8		337

	Differences in NO ₂ columns obtained from SCIAMACHY and OMI	
Fig. 7.9	Comparison of CO columns from SCIAMACHY	
	and MOPITT	339
Fig. 7.10	MAXDOAS instrument at the Uni-Bremen	351
Fig. 7.11	Satellite validation of tropospheric NO ₂	351
Fig. 7.12	MAXDOAS instruments at the Cabauw intercomparison	356
Fig. 8.1	Monthly averages of NO ₂ over China	369
Fig. 8.2	GOME NO ₂ and HCHO columns over the	
	northern hemisphere	371
Fig. 8.3	Global CO mixing ratios	372
Fig. 8.4	Population density and MOPITT CO ratios over China	373
Fig. 8.5	Yearly global HCHO columns from GOME and	
	SCIAMACHY	379
Fig. 8.6	Yearly mean CHOCHO and HCHO from SCIAMACHY	380
Fig. 8.7	Yearly columns of NH ₃ from IASI - global and	
	the Po valley	383
Fig. 8.8	SCIAMACHY CO ₂ observations over North American	
	ecosystems	384
Fig. 8.9	GOME measurements of BrO in the Antarctic and Arctic	387
Fig. 8.10	Seasonally averaged IO columns over Antarctica	389
Fig. 8.11	ACE-FTS time series measurements of CH ₃ OH	390
Fig. 8.12	Global distributions of HNO ₃ from IMG-ADEOS	391
Fig. 8.13	Global column density maps for O ₃ , NO ₂ , CO, HCHO,	
	CHOCHO, SO ₂ , CO ₂ , CH ₄ , H ₂ O, BrO, IO	400
Fig. 8.14	SO ₂ columns over central and southern America	404
Fig. 8.15	Global CO mixing ratios from MOPITT	404
Fig. 8.16	CO ₂ columns from AIRS, TES and the	
	GEOS-CHEM model	405
Fig. 8.17	Eruption of Kasatochi: GOME-2 measurements of BrO	406
Fig. 8.18	Transport of NO ₂ from North America to Europe	407
Fig. 8.19	Annual changes in NO ₂ from GOME	408
Fig. 8.20	Variation of CO ₂ shown by SCIAMACHY	409
Fig. 8.21	NO ₂ source identification and maximum NO ₂	410
Fig. 8.22	Regional weekly cycles of NO ₂ from SCIAMACHY	/11
Fig 8 23	Correlation of NO ₂ with lightning counts	/13
Fig. 8.23	Monthly mean HCHO/NO ₂ ratios from GOME	414
Fig. 8.25	Differences in NO. columns between SCIAMACHY	717
115. 0.25	and OMI	415
Fig 8 26	Boundary layer CO from SCIAMACHY and OMI	415
Fig 8 27	AIRS SO ₂ from the Souffriere Hills volcano	416
Fig 91	SCIAMACHY column densities of CHOCHO over	710
0, >	southern Europe	452
	r r	

Fig. 9.2	Trans-Asian pollution event from MOPITT CO	454
Fig. 9.3	Modelling and Gome results for HCHO over the	
	Indian Ocean	457
Fig. 9.4	Modelling and SCIAMACHY results for global CHOCHO	458
Fig. 9.5	Annual mean NO ₂ column density from SCIAMACHY	462
Fig. 9.6	NO ₂ over the Indian Ocean from SCIAMACHY	464
Fig. 9.7	Global CO:MOPITT and modelling results	465
Fig. 9.8	Model comparisons for AOT values	466
Fig. 9.9	Modelled NO _x European emission rates	468
Fig. 9.10	Optimised anthropogenic emissions from MOPITT data	471
Fig. 9.11	Mean averaging kernel over Europe for NO ₂	476
Fig. 9.12	European NO ₂ columns from modelled and	
	assimilated results	477
Fig. 9.13	Data assimilation results for tropospheric NO ₂ columns	478
Fig. 9.14	SYNAER Data assimilation of PM10	480
Fig. 10.1	Eyjafjallajoekull volcano eruption: plume and MERIS	
	AOD results	499
Fig. 10.2	LEO sun synchronous orbits	511
Fig. 10.3	Geostationary satellite geometry	511
Appendix B	Ancillary global data: cloudfree Earth, Earth at night,	
	vegetation, fires and lightning flashes	523
Appendix D	Timelines for present and future emissions	532

Chemical Names and Molecular Formulae

Oxygen and hydrogen contai	ning	Orga
molecules and radicals	0	Meth
Oxygen	O ₂	Ethy
Oxygen atom	0	Etha
Oxygen atom (ground state)	$O(^{3}P)$	Ether
Oxygen atom (first excited	$O(^{1}D)$	Meth
state)		Form
Ozone	O ₃	Form
Water	H_2O	Glyo
(Ice, liquid,vapour)		Acet
Water		Peroz
(Partially deuterated)	HDO	(PAN
Hydrogen peroxide	H_2O_2	
Hydroxyl radical	OH	Halo
Hydroperoxy radical	HO ₂	Chlo
		Нурс
Nitrogen compounds		Нурс
Nitrogen	N_2	Bron
Nitric oxide	NO	Hydr
Nitrogen dioxide	NO_2	Hydr
Nitrous oxide	N_2O	Meth
Nitrate radical	NO ₃	
Nitric acid	HNO ₃	Halo
Dinitrogen pentoxide (nitric	N_2O_5	Chlo
acid anhydride)		Bron
Peroxynitric acid	HNO_4	Iodin
Ammonia	NH ₃	
Hydrogen cyanide	HCN	CFC
		CFC
Oxidised carbon		CFC
Carbon monoxide	CO	CFC
Carbon dioxide	CO_2	
	(1)	

Organic compounds	
Methane	CH_4
Ethyne (acetylene)	C_2H_2
Ethane	C_2H_6
Ethene (ethylene)	C_2H_4
Methanol	CH ₃ OH
Formaldehyde	HCHO
Formic acid	HCOOH
Glyoxal	CHOCHO
Acetone	CH ₃ COCH ₃
Peroxyacetyl nitrate	CH ₃ COO ₂ NO ₂
(PAN)	
Halogen compounds	CIONO
Chlorine nitrate	CIONO ₂
Hypobromous acid	HOBr
Hypochlorous acid	HOCI
Bromine nitrate	BrONO ₂
Hydrogen fluoride	HF
Hydrogen chloride	HCI
Methyl chloride	CH ₃ Cl
Halogen radicals	
Chlorine monoxide	ClO
Bromine monoxide	BrO
Iodine monoxide	IO
CFCs	
CFC-11	CFCl ₃
CFC-12	CF_2Cl_2
CFC-113	Cl ₂ FCCClF ₂
	(continued)

(continued)

HCFCs		Hydrogen Sulfide	H ₂ S
HCFC-142b	ClF ₂ CCH ₃	Dimethyl Sulfide DMS	CH ₃ SCH ₃
HCFC-22	CHClF ₂	Carbon disulfide	CS_2
		Sulfuric acid	H_2SO_4
Sulfur compounds		Carbonyl sulfide	OCS
Sulfur dioxide	SO_2	Sulfur hexafluoride	SF_6
	(continued)		

A Full list of Abbreviations and Acronyms is given in Appendix C.